ニュース

「a^2+b^2=1224」となる自然数a,bを求めよ シンプルなのにめちゃくちゃ難しい…… 難関大学レベルの数学に挑戦!(7/8 ページ)

整数問題は奥が深い。

advertisement

問題

一見簡単そうだけど……

解答

 両辺のそれぞれを、3で割った余りで分類して考える。

advertisement

 自然数aは、負でない整数kを用いて「3k,3k+1,3k+2」のいずれかの形で表せる。このとき、a2は負でない整数mを用いて、「3m,3m+1」のいずれかの形で表せる。(3で割った余りが0のものは3k、3で割った余りが1のものは3k+1…のように分類している)

 同様に自然数bに対しても、負でない整数lを用いて「3l,3l+1,3l+2」のいずれかの形で表せる。このとき、b2は負でない整数nを用いて、「3n,3n+1」のいずれかの形で表せる。

 一方で、1224は3の倍数であるから、3で割った余りは0。これまでの話から、a2、b2を3で割った余りはそれぞれ0か1であることがわかっているので、a2+b2を3で割った余りが0となるためには、a2とb2を3で割った余りは両方0となる必要がある。

 言い換えれば、「a=3k,b=3l」(k,lは自然数)と表せることが条件を満たすためには必要ということである。これを問題の式に代入してみると、「k2+l2=136」という式を導くことができる。

 136は4の倍数であることに注目して、今度は4で割った余りで分類する。先ほどと同様に考えると、「k2,l2」を4で割った余りは0か1のいずれかになることがわかる。条件を満たすには、それぞれの余りが0になる必要がある。

advertisement

 このとき、「k,l」を4で割った余りは0か2であることに注意すれば、「k,l」は偶数であることがわかるから、負でない整数p,qを用いて、「k=2p,l=2q」と表すことができる。これを「k2+l2=136」に代入して、p2+q2=34が導かれる。

 これを満たすp,qは5よりも小さい整数であることに注意して値を求めると、「p=3,q=5またはp=5,q=3」であることがわかり、これによって「k=6,l=10またはk=10,l=6」であることがわかるので、求める答えは「a=18,b=30またはa=30,b=18」となる。

Copyright © ITmedia, Inc. All Rights Reserved.

記事ランキング

  1. 刺しゅう糸を20時間編んで、完成したのは…… ふんわり繊細な“芸術品”へ「ときめきやばい」「美しすぎる!」
  2. 友達が描いた“すっぴんで麺啜ってる私の油絵"が1000万表示 普段とのギャップに「全力の悪意と全力の愛情を感じる」
  3. 「理解できない」 大谷翔平と真美子さんの“スキンシップ”に海外驚き 「文化は100%違う」「伝説だわ」【大谷翔平激動の2024年 現地では「プレー以外のふるまい」も話題に】
  4. 後輩が入手した50円玉→よく見ると…… “衝撃価値”の不良品硬貨が1000万表示 「コインショップへ持っていけ!」
  5. 「これは家宝級」 リサイクルショップで買った3000円家具→“まさかの企業”が作っていた「幻の品」で大仰天
  6. 「人のような寝方……」 “猫とは思えぬ姿”で和室に寝っ転がる姿が377万表示の人気 「見ろのヴィーナス」
  7. 毛糸6色を使って、編んでいくと…… 初心者でも超簡単にできる“おしゃれアイテム”が「とっても可愛い」「どっぷりハマってしまいました」
  8. ウソだろ…… フリマに5000円で売っていた“信じられない商品”に思わず二度見 「やっぱり寂しい」
  9. ザリガニが約3000匹いた池の水を、全部抜いてみたら…… 思わず腰が抜ける興味深い結果に「本当にすごい」「見ていて爽快」
  10. ブックエンドの“じゃない”使い方が200万再生 驚きの発想に「痒いところに手が届く」「参考にします」