コラム
» 2019年09月11日 12時00分 公開

【統計学で考える】都市伝説「しゃっくりを100回すると死ぬ」は何秒後に死ぬのか(1/3 ページ)

「首都圏の直下型地震は○○年以内に起こる」などでも使われている計算方法で確率を出してみました。

[キグロ,ねとらぼ]

 しゃっくりを100回すると死ぬ―― こんな都市伝説をご存じでしょうか。真偽のほどは分かりません、恐ろしい言葉です。「ひっく」と1回ごとに減っていく命のカウント。いつしゃっくりが起こるかも、人生の残り時間も分からないなか、やれ水を飲めば止まるとか、やれ息を止めれば止まるとか、まことしやかにささやかれているあの手この手を尽くすほかない……。

 信じるか信じないかはあなた次第ですが、この恐怖を軽減するためにはせめて死への猶予時間だけでも把握したいものです。例えば、5回くらいしゃっくりの間隔を測定して、平均が10秒だったとしましょう。とすると、1回目から100回目までの時間は99倍の990秒(16分30秒)ということに……なるでしょうか?

 これは平均です。おおよそ990秒程度にはなりますが、それ以外の時間になることの方が多いです。できれば、何秒後に死ぬのか、もっと正確に把握したい。漫画の頭脳派キャラみたいにメガネをクイッとしながら「○○%の確率で△分後に死亡する」と言ってみたい。

 そんな願いを叶えてくれるのが……そう、統計学なのです。



ライター:キグロ

5分間で数学を語るイベント「日曜数学会」や数学好きが集まる部室みたいなもの「数学デー」の主催者。数学の記事を書いたり、カクヨムで小説を書いたりしている。


「しゃっくりを100回すると死ぬ」は何秒後に死ぬのか、統計学的に考えてみた

 しゃっくりの間隔は、ランダムといえどおおよそ同じような長さです。平均10秒なら、5秒や15秒になることはあっても、1秒や30秒になることはほとんどありません。また、100回目に近づくほど間隔が短くなったり長くなったりすることもありません。そして、前回の間隔が長いと次の間隔が短くなる、といったこともなさそうです。

 このような現象は、「指数分布に従う」と推測されます。

 指数分布とは何でしょうか。これは、まさに上記のような「(以前の発生とは関係なく)平均して△秒の間隔で起こる現象が、次は何秒後に起こるかを表す確率分布」で、以下のような関数で表すことができます。



f(x)=(1/λ)e^(-x/λ)

※正確には「指数分布の確率密度関数」と呼ばれるものです

  • f(x):確率分布を表すのによく使う記号で、「xになる確率はこれこれ」と述べるために使います
  • e:自然対数の底と呼ばれる数で、約2.7182です。円周率のようなものだと思ってください
  • λ(ラムダ):「次に起こるまでの平均時間」を表します。今回の場合は10秒ですね。
  • x:次にしゃっくりが起こるまでの時間

 なにやら妙な記号が使われていますが、この関数は「平均λ秒の間隔で起こるしゃっくりが、x秒後に起こる確率」を表したもの。xに好きな数を代入すると、その時間でしゃっくりが起こる確率(正確には確率密度)が分かります。

 勘の鋭い読者はここで「あれ?」と思うかもしれません。

 「今知りたいのは100回目のしゃっくりがいつ起こるかで、次にしゃっくりが起こる時間ではないのでは?」

 その通りです。指数分布で分かるのは“次のしゃっくり”が起こる時間であり、“100回目のしゃっくり”が起こる時間ではありません。

 しかし、指数分布を拡張した分布「ガンマ分布」を使えば、100回目のしゃっくりが起こる時間を計算できます。



f(x)={e^(-x/λ)/(λ^nΓ(n))}x^(n-1)

※正確には「ガンマ分布の確率密度関数」と呼ばれるものです

  • n:ここではしゃっくりの回数を表し、n=100。ガンマ分布は、平均λ秒の間隔で起こる現象がn回起こるまでの時間がxである確率を表す確率分布
  • Γ(n)(ガンマ・エヌ):詳細は端折りますが、「ガンマ関数」と呼ばれるものを表す記号。今回の場合はn=99なので、「Γ(n)=Γ(99)=98×97×96×…×3×2×1」とものすごく大きな数になります

 なお、確率を計算するには、単に値を代入するのではなく、積分をしてやる必要があります。

 というのは、単に値を代入するだけだと、「ジャスト△秒後にしゃっくりが起こる確率」(正確には確率密度)になってしまうからです。現実世界ではそんなジャストにピタッといくことは考えにくいので、△秒後に起こる確率から□秒後に起こる確率までを全部積み重ねる=積分することで求めます。

       1|2|3 次のページへ

Copyright © ITmedia, Inc. All Rights Reserved.

昨日の総合アクセスTOP10

  1. /nl/articles/2110/27/news100.jpg 戸田恵梨香、水川あさみと同様に長文公開 「私を追いかけて、どうか車の事故を起こさぬようお気をつけください」
  2. /nl/articles/2110/27/news095.jpg 水川あさみ、週刊誌に対して怒りの反論 「事実無根だと言っても強行突破で発売」「かなり目に余るものがあります」
  3. /nl/articles/1904/10/news098.jpg 賀来賢人、“フライデー被害風”写真が超リアル! 「本当にそろそろやめてね」と写真週刊誌への本音も
  4. /nl/articles/2110/25/news149.jpg 「くそが……!」 最上もが、奮発した「Uber Eats」の対応に怒り爆発 1400円ステーキの“中身”に「絶望」「もう頼まねえ」
  5. /nl/articles/2110/27/news109.jpg 「納言」 薄幸、テレ朝で警備員からまさかのシャットアウト “牢獄みたいな薄暗い部屋”へ閉じ込められる事態に
  6. /nl/articles/2110/27/news025.jpg 猫よけをびっちり置いた結果……子猫が!? ちんまりくつろぐ姿に「仲間がいた」「何やっても人間の負け」と爆笑
  7. /nl/articles/2110/26/news040.jpg ニトリで猫用ベッドを購入→「大変気に入ってるようです」 笑撃のオチに「そっちだよね」「猫あるある〜」の声
  8. /nl/articles/2101/23/news043.jpg 水川あさみ、5キロ増の“愛しきぜい肉”ショットが女優の勲章 「リアルお母さん体型」「気取らないとこが素敵」と反響
  9. /nl/articles/2110/20/news052.jpg 「PS5購入者は箱に名前を書いてもらう」ノジマはなぜ転売ヤーを許さないのか? 苛烈な転売対策の背景を担当者に聞いた
  10. /nl/articles/2110/26/news181.jpg 「学校へ行こう!」出演のパークマンサー、V6へ感謝のメッセージ 「ホントにホントにありがと言っちゃうアホだよ」

先週の総合アクセスTOP10

  1. 「くそが……!」 最上もが、奮発した「Uber Eats」の対応に怒り爆発 1400円ステーキの“中身”に「絶望」「もう頼まねえ」
  2. 伊藤かずえ、13年間ともにした愛車とお別れ 総走行距離は14万キロ超で「今まで本当に有り難う」と感謝
  3. 庄司智春、愛車ダッジ・チャレンジャーが廃車に ガソリンスタンドで炎上、ボンネットから発煙し「やばい」
  4. 山本美月、ウエディングドレス姿がまるで「妖精」 母親のドレスをリメイクし背中に“羽”
  5. 「シーンとなった球場に俺の歌声がして……」 上地雄輔、後輩・松坂大輔の引退試合で“まさかのサプライズ”に感激
  6. シャンプーしたての柴犬に、猫がクンクン近づいて…… 何年たっても仲の良い姿に心がほかほか癒やされる
  7. ニトリで猫用ベッドを購入→「大変気に入ってるようです」 笑撃のオチに「そっちだよね」「猫あるある〜」の声
  8. じゃれ合う保護子猫たち、1匹が逃げ込んだのはまさかの…… ダッシュする姿に「一番安心だと知ってる」「爆笑した」の声
  9. 元SKE石田安奈、第1子出産後のぽっこりおなかに驚愕 産んだらへこむと思っていたのに「もう1人いるの!?」
  10. 産み捨てられた未熟児の子猫を保護、生死をさまよったが…… すくすく育った1カ月後のビフォーアフターに涙