ニュース
» 2020年07月24日 15時00分 公開

この図形の面積、三平方の定理を使わずに出せる? ヒラメキで解く“算数”がちょっと手ごわい

こういう問題をスッと解ける子どもでありたかった……。

[沓澤真二,ねとらぼ]

 十字型の図形の面積を問う小学生向けの問題が、「これは良問」と好評です。「算数」の知識だけで解けるかな?


算数問題 手がかりは対角に入った赤線の長さのみ

 Twitterユーザーのロボ太(@kaityo256)さんが、「息子の塾で出たのがちょっと面白かった」と紹介した問題。出題の図形は同寸の正方形を5つ並べたような十字型で、寸法に関する情報は、対角に入った赤線の長さが10センチであることだけです。大人としては、これを手がかりに三平方の定理を用いて1辺の長さを求めたくなるところですが、これはあくまでも算数の問題。がまんして別の工夫で解くのが筋というものでしょう。


 解法は2つあり、1つは図形を赤線で切って2等分したものを、4つ分並べて1辺10センチの正方形を作る方法。その面積を求めて半分にすればもともとの面積が割り出せるわけで、答えは10×10÷2で50平方センチメートル。



 もう1つは、赤線に対して同じ長さの補助線を直交するように引く方法。さらに線の端を補助線で結ぶと、元の図形が赤線を対角線とする正方形へ組み替えられた格好が見えてきます。正方形の面積は「対角線の長さ×対角線の長さ÷2」でも求められるので、答えはやはり10×10÷2で50平方センチメートル。



 ツイートには「算数の領分で解く小学生向けの問題と考えると、逆に難しい」「大人は『1辺がルート10センチの正方形が5個並んでいる』と知覚するのですが、子どもは見え方が違うのですね」など、考え込む大人の反応が多数。ロボ太さんは「小学生向けの問題には、進んだ知識があるとかえって解けなくなるものがありますよね……」と述べています。


画像提供:ロボ太(@kaityo256)さん



Copyright © ITmedia, Inc. All Rights Reserved.